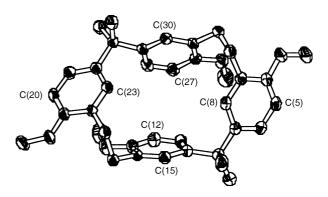

Preparation of 4,13,19,28-Tetrahydroxy-9,9,24,24tetramethyl[2.1.2.1]metacyclophane, a Novel *exo*-Hydroxycalixarene Analogue†

Akira Miyazawa,^{*a} Yasuzo Suzuki,^a Tsuyoshi Sawada,^b Shuntaro Mataka^b and Masashi Tashiro^c

^aDepartment of Polymer Chemistry, National Institute of Materials and Chemical Research, 1-1 higashi, Tsukuba, Ibaraki 305-3565, Japan ^bInstitute of Advanced Material Study, Kyushu University, 6-1 Kasuga-kohen, Kasuga, Fukuoka 816-8580, Japan ^cTohwa Institute for Science, Tohwa University, 1-1-1, Chikushigaoka, Minami-ku, Fukuoka, Fukuoka 815-0032, Japan


A novel 4,13,19,28-tetrahydroxy-9,9,24,24-tetramethyl[2.1.2.1] metacyclophane is prepared from bisphenol A in six steps and found to have a saddle structure in solid state.

We have reported that a series of [2.n.2.n]metacyclophanes (n = 1, 2) are useful building blocks for supramolecular assemblies by fuctionalization of hydroxy groups introduced at internal positions.^{1–3} Recently, *exo*-calixarene derivatives containing hydroxy groups at the outer positions have been central for novel supramolecular assemblies.^{4–7} Here, we report the preparation of *exo*-tetrahydroxy[2.1.2.1]metacyclophane and the crystal structure of its tetramethylated derivative.

Scheme 1 *Reagants and conditions*: i, Mel, K₂CO₃ (72%); ii, (HCHO)_x, HCI, AcOH, H₃PO₄ (56%); iii, Na₂S (62%), iv, *m*-CPBA (82%); v, 450 °C (1 Torr) 44%; vi, BBr₃ (66%)

exo-Tetrahydroxy[2.1.2.1]metacyclophane 7 was prepared from bisphenol A 1 in six steps (Scheme 1). The bis-(chloromethyl) derivative 3 was prepared according to the method reported previously.⁸ Cyclization of 3 with sodium sulfide under high-dilution conditions afforded the corresponding dithiacyclophane 4 in 62% yield. Oxidation of 4 with *m*-CPBA, followed by flash vacuum pyrolysis (450 °C, 1 Torr) gave 4,13,19,28-tetramethoxy-

Fig. 1 Top view of the molecular structure of **6** showing the atom numbering scheme (hydrogen atoms are omitted for clarity). Selected atom distances in Å: C(5)-C(20), 10.655, C(8)-C(23), 5.668, C(12)-C(27), 3.710, C(15)-C(30) 5.833.

9,9,24,24-tetramethyl[2.1.2.1]metacyclophane **6** in 14% yield. Demethylation leading to the desired 4,13,19,28-tetrahydroxy-9,9,24,24-tetramethyl[2.1.2.1]metacyclophane **7** in 66% yield was carried out by reaction with BBr₃. According to ¹H NMR spectroscopy, compound **7** is conformationally flexible in solution. The ¹H NMR spectrum of **7** shows two singlets assigned to four methyl groups (δ 1.49, 12H) and eight protons (δ 2.87, 8H) of bridging CH₂ at 273 K. No significant change in the ¹H NMR spectrum was observed in the temperature range 173–273 K.

The molecular structure of 6 (satisfactory crystals of 7 could not be obtained) was determined by single crystal X-ray crystallographic analysis (Fig. 1). Two phenyl rings which face each other incline into the cavity whereas the other two phenyl rings point outwards and the conformation of 6 can be described as saddle like in the solid state. Bond distances and angles are unexceptional.

Functionalization of the hydroxy groups leading to supramolecular assemblies is in progress.

Experimental

All melting points are uncorrected. ¹H NMR spectra were recorded on a Nippon Denshi JEOL GSX-270 spectrometer in CDCl₃ with Me₄Si as internal reference. IR spectra were measured for KBr pellets on a Perkin Elmer Paragon1000 spectrometer. Mass spectra were obtained on a Hitachi M-80B spectrometer utilizing a 75 eV direct inlet system. X-Ray crystallographic analysis was performed on an Enraf-Nonius CAD4 diffractometer. Column chromatography was carried on silica gel (Wako gel, C300).

Cyclization of **3** *with* Na₂S.—A solution of 4.0 g (11.3 mmol) of dichloride **3** in 300 mL of benzene was added dropwise over a period 12 h to a solution of 5.43 g (22.6 mmol) of sodium sulfide nonahydrate

J. Chem. Research (S), 1999, 426–427[†]

^{*} To receive any correspondence (*e-mail*: amiya@nimc.go.jp). † This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (*S*), 1999, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (*M*).

in 1 l of EtOH with stirring at room temperature under an N₂ atmosphere. After addition was complete, the reaction mixture was evaporated to leave a residue from which organic materials were extracted with chloroform. The chloroform solution was washed with water and brine, dried with Na₂SO₄, and evaporated to leave a residue which was chromatographed on SiO₂ with hexane–AcOEt (9:1 v/v) as eluent to give a colorless solid, which was recrystalized from hexane–chloroform to yield 2.20 g (62%) of 2,18-dithia-5,14,21,30-tetramethoxy-10,10,26,26-tetramethyl[3.1.3.1]metacyclophane **4** as colorless prisms; mp 237–238 °C; v_{max}/cm^{-1} 811, 1031, 1249, 1503, 1606, 2917, 2963, 2996; $\delta_{\rm H}$ 1.55 (12H, s), 3.25 (8H, s), 3.81 (12H, s), 6.56 (4H, d, J = 2.4 Hz), 6.80 (4H, d, J = 8.6 Hz); m/z 628 (M⁺) (Found: C, 72.33; H, 7.12. C₃₈H₄₄O₄S₂ requires C, 72.59; H, 7.05%).

Oxidation and Flash Vacuum Pyrolysis.—To 3.66 g (5.82 mmol) of 4 in 90 mL of dry chloroform was added 5.52 g (25.6 mmol) of *m*-CPBA and the solution stirred for 1 h under an N₂ atmosphere. The reaction mixture was poured into 100 mL of aqueous NaOH, 10%. The organic phase separated, dried with Na₂SO₄ and evaporated to give the disulfone **5** (3.30 g, 82%) as a white powder; mp > 300 °C; v_{max}/cm^{-1} 822, 1026, 1119, 1253, 1304, 1503, 1612, 2935, 2968, 3009; $\delta_{\rm H}$ 1.60 (12H, s), 3.85 (12H, s), 4.12 (8H, s), 6.85 (4H, d, J = 8.6 Hz), 6.95 (4H, d, J = 2.4 Hz), 7.33 (4H, dd, J = 2.4, 8.6Hz).

Without further purification, sulfone **5** (3.5 g, 5.05 mmol) was pyrolyzed at 450 °C (1 Torr) according to the literature.⁹ The sublimed product was collected and chromatographed on SiO₂ with hexane–CHCl₃ (1/1, v/v) as eluent to give 4,13,19,28-tetrahydroxy-9,9,24,24-tetramethyl[2.1.2.1]metacyclophane **6** (1.26 g, 44%) as colorless prisms (hexane); mp 213–214 °C; v_{max}/cm^{-1} 803, 1035, 1243, 1257, 1502, 1605, 2926, 2956; $\delta_{\rm H}$ 1.47 (12H, s), 2.84 (8H, s), 3.60 (12H, s), 6.56 (4H, d, J = 2.3 Hz), 6.61 (4H, d, J = 8.6 Hz), 6.88 (4H, dd, J = 2.3, 8.6 Hz); m/z 564 (M⁺) (Found: C, 80.77; H, 7.79. C₃₈H₄₄O₄ requires C, 80.81; H, 7.85%).

Demethylation of **6**.—To a solution of 400 mg (0.71 mmol) of **6** in 50 mL of dry CH₂Cl₂ was added dropwise 4.25 mL (4.25 mmol) of **B**Br₃ with stirring at 0 °C under an N₂ atmosphere. After addition was complete, the reaction mixture was poured into a large volume of ice/water. The organic layer was washed with water and brine, dried with Na₂SO₄, and evaporated to leave a residue. The resulting residue was chromatographed on SiO₂ with CHCl₃ as eluent to give the 4,13,19,28-tetrahydroxy-9,9,24,24-tetramethyl[2.1.2.1]metacyclophane **7** (238 mg, 66%) as colorless prisms from hexane; mp 238–240 °C; v_{max}/cm^{-1} 820, 1100, 1157, 1255, 1416, 1503, 1611, 2930, 2960, 3017, 3420; $\delta_{\rm H}$ 1.49 (12H, s), 2.87 (8H, s), 4.23 (4H, s, D₂O exchangeable), 6.55 (4H, d, J = 2.3 Hz), 6.61 (4H, d, J = 8.6 Hz), 6.87 (4H, dd, J = 2.3, 8.6 Hz); m/z 508 (M⁺) (Found: C, 80.15; H, 7.25. C₃₄H₃₆O₄ requires C, 80.28; H, 7.13%).

X-Ray Crystal Structure Determination of **6**. Crystal Data.—C₃₈H₄₄O₄, M = 564.77, triclinic, space group P-1 (no. 2), a = 11.066(2), b = 14.832(1), c = 9.690(1)Å, $\alpha = 91.71(1)$, $\beta = 93.15(1)$, $\gamma = 90.38(1)$, V = 1587.1(4)Å³, (by least-squares refinement on diffractometer angles for 23 automatically centered reflections, $\lambda = 1.541$ 84Å), Z = 2, $D_c = 1.1817$ g cm⁻³, colorless prism, crystal size $0.10 \times 0.15 \times 0.17$ mm. μ (Cu-K α) = 0.587 mm⁻¹.

Data Collection and Processing.—CAD4 FR590 diffractometer, $\omega - 2\theta$ mode with ω scan width = 0.8 + 0.360 tan θ , scan speed 2-20° min⁻¹, graphite-monochromated Cu-K α radiation; 5714 reflections were measured (2.98 $\leq \theta \leq 64.94$, +h, ±k, ±1). 5401 unique [merging R = 0.0235 after absorption correction (max, min. transmission factor = 0.9663, 0.9990)], linear and approximately isotopic crystal decay, *ca.* -0.0% corrected during procedure.

Structure Analysis and Refinement.—The structure was solved by direct methods (SIR92).¹⁰ Full-matrix least-squares refinement on F^2 with all non-hydrogen atoms anisotropic and hydrogens in calculated positions with $U_{iso} = 1.3$ times of U (bonded atoms). The weighting scheme $w = 1/[\sigma^2(F_0^2) + (0.1687P)^2 + 26.0206P]$ where $P = (F_0^2 + 2F_c^2)/3$. Final R and R_w values are 0.0477, 0.1269 (refined on F^2). All calculations were performed on a MicroVAX3100 and IBM RISC System/6000 3100 using MolEN¹¹ and SHELXL-93.¹² Full emotple carbon back

Full crystallographic details, excluding structure factors, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Research (S)*, 1998 Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 423/23.

See http://www.rsc.org/suppdata/jc/1999/426 for crystallographic files in .cif format.

Received, 23rd February 1999; Accepted, 26th March 1999 Paper E/9/01502G

References

- M. Tashiro, A. Tsuge, T. Sawada, T. Makishima, S. Horie, T. Arimura, S. Mataka and T. Yamato, *J. Org. Chem.*, 1990, 55, 2404.
- 2 A. Tsuge, T. Sawada, S. Mataka, N. Nishiyama, H. Sakashita and M. Tashiro, J. Chem. Soc., Perkin Trans. 1, 1992, 1489.
- 3 T. Sawada, A. Tsuge, T. Thieman, S. Mataka and M. Tashiro, J. Inclusion Phenom. Mol. Recognit. Chem., 1994, 19, 301.
- 4 D. W. Chaser, J. Org. Chem., 1985, 50, 545.
- 5 G. Sartori, R. Maggi, F. Bigi, A. Arduini, A. Pastorio and C. Porta, J. Chem. Soc., Perkin Trans. 1, 1994, 1657.
- 6 V. Böhmer, R. Dorrenbacher, M. Frings, M. Heydenreich, D. de Paoli, W. Vogt, G. Fergunson and I. Thondorf, J. Org. Chem., 1996, 61, 549.
- 7 T. N. Sorrell and H. Yuan, J. Org. Chem., 1997, 62, 1899.
- 8 US Pat. 2884462, 1956 (Chem. Abstr., 1956, 74, 87599).
- 9 M. Tashiro and T. Yamato, J. Org. Chem., 1985, 50, 2939.
- 10 SIR92: M. C. Altmare, M. Burla, G. Camalli, C. Cacarano, A. Giacovazzo, G. Guagliardi and J. Polidori, J. Appl. Crystallogr., 1994, 27, 435.
- 11 MolEN: An Interactive Structure Solution Procedure, Enraf-Nonius, Delft, The Netherlands, 1990.
- SHEXL-93: G. M. Sheldrick, University of Göttingen, Germany, 1993.